ITcomputer tu blog informático. Cursos, descargas, temas, prácticas. Ofimática, TICS, Soporte, Mantenimiento, Ciencias de la computación, programación, y mucho más!!

ITC - Tecnologías de la Información

Exploro el fascinante mundo de las tecnologías de la información en este espacio personal. Descubre conmigo las últimas tendencias, consejos prácticos y reflexiones sobre el impacto de la tecnología en nuestra vida cotidiana. ¡Acompáñame en este viaje digital!

ITC - Programación

Exploro las últimas novedades en el mundo de las tecnologías de la información y comparto insights sobre el fascinante universo de la programación.

ITC - Redes Informáticas

Aquí, exploraremos a fondo las complejidades y las últimas innovaciones en redes informáticas.

ITC - Redes, Programación, Ciberseguridad, Soporte Técnico y mucho más...

Exploro un amplio espectro que abarca desde redes y programación hasta ciberseguridad y soporte técnico.

Ciberseguridad, Seguridad Informática, Hacking

Ahora, además de abordar temas emocionantes de tecnología, nos aventuramos en el universo de la ciberseguridad.

Mostrando entradas con la etiqueta INFORMATICA. Mostrar todas las entradas
Mostrando entradas con la etiqueta INFORMATICA. Mostrar todas las entradas

lunes, 18 de marzo de 2024

Introducción a BGP

 


BGP (Border Gateway Protocol) es un protocolo de enrutamiento moderno diseñado para ser escalable y poder utilizarse en grandes redes creando rutas estables entre las organizaciones. BGP soporta VLSM (Variable Length Subnet Mask), CIDR (Classless Interdomain Routing) y sumarización.

BGP es un protocolo de enrutamiento extremadamente complejo, usado entre organizaciones multinacionales y en Internet. El principal propósito de BGP es conectar grandes redes o sistemas autónomos. Las grandes organizaciones utilizan BGP como el vínculo entre diferentes divisiones empresariales. BGP se utiliza en Internet para conectar diferentes organizaciones entre sí.

Es el único protocolo que actualmente soporta enrutamiento entre dominios. Los dispositivos, equipos y redes controlados por una organización son llamados sistemas autónomos, AS. Esto significa independentia, es decir, que cada organización es independiente de elegir la forma de conducir el tráfico y no se los puede forzar a cambiar dicho mecanismo. Por lo tanto BGP comunica los AS con independencia de los sistemas que utilice cada organización.

Otro punto clave es que BGP pretende que las redes permanezcan despejadas de tráfico innecesario el mayor tiempo posible. Mientras que los IGP están buscando la última información y ajustando constantemente las rutas acordes con la nueva información que se recibe, BGP está diseñado para que las rutas sean estables y que no se estén advirtiendo e intercambiando constantemente.

Las configuraciones de BGP requieren determinaciones de políticas muy complicadas, de modo que dada la complejidad del protocolo y el inmenso tamaño de la tabla de enrutamiento, que pueden ser cientos de miles, no se puede estar cambiando constantemente decisiones de enrutamiento haciendo que los routers estén constantemente sobrecargados.



Share:

sábado, 20 de enero de 2024

Introducción a la telefonía IP

 


Entre los usos de las redes de datos actuales, encontramos a la telefonía IP. La telefonía IP o Voice over IP (VoIP) permite la transmisión de comunicaciones multimedia sobre redes IP sean estas públicas (internet) o privadas. Algunos de los estándares más difundidos es SIP (Session Initiation Protocol). También existen implementaciones que utilizan protocolos propietarios.

El principal reto de la telefonía IP radica en la calidad y confiabilidad del servicio. Reemplaza las redes de telefonía tradicionales (PSTN) y típicamente oligopólicas, con estándares abiertos de menos costo y mayor flexibilidad y funcionalidad.


Figura 1. GrandStream Teléfono IP GRP2602P, se conecta a la red Ethernet y agrega funcionalidades, como el directorio telefónico integrado.


La telefonía sobre internet y los servicios que soporta (voz, SMS y otras aplicaciones de mensajería) son transportados vía enclaces de datos en lugar de la red PSTN (Public Switched Telephone Network). Los pasos involucrados en una llamada VoIP son:

- Señalamiento y establecimiento del canal.
- Digitalización de la señal de voz analógica.
- Codificación.
- Paquetización.
- Transmisión sobre el protocolo IP.

En el lado receptor, los pasos se realizan en el orden inverso:

- Recepción de los paquetes IP.
-Despaquetización.
- Decodificación.
- Conversión de digital a analógico.


Share:

lunes, 6 de noviembre de 2023

Despliegue IPv6

 


La expansión del espacio de direcciones fue muy importante, pasando de utilizar un espacio de 32 bits (109 direcciones) a otro de 128 bits (3.4𝑥1038 direcciones), también se dio importancia a la forma de dividir dicho espacio para el mejor aprovechamiento y gestión del mismo. En este sentido, IPv6 anula la necesidad de usar NAT, facilita las tareas de configuración y re-numeración de direcciones, mejora la eficiencia del ruteo actual haciéndolo más flexible ante futuras posibilidades, incorpora la comunicación multicasting, que antes era opcional, provee mejor soporte en cuanto la seguridad y calidad de servicio y considera la posibilidad de movilidad desde el punto de vista de IP.

A pesar de tantos cambios, la filosofía de diseño de IPv6 todavía mantiene mucho de su antecesor IPv4, ya que la idea que lo originó era más cercana a la de una actualización que a la de un reemplazo.

La implementación de IPv6 comenzó con el desarrollo de redes experimentales para pruebas de la operación del protocolo. Luego, en 1996, estas redes se conectaron en una inter-red, también de carácter experimental, conocida como 6BONE. El gran problema de la migración es que los esquemas de direccionamiento de IPv4 e IPv6 no son compatibles, como tampoco lo es el formato de los paquetes. En este sentido, la transición exige, de todas maneras, alguna forma de inter-operatividad.

La IETF ha trabajado mucho en cuestiones específicas para asegurar una transición no traumática entre versiones del protocolo. Los métodos más importantes que consideran una compatibilidad hacia atrás, permitiendo la convivencia de ambos protocolos son:

·       Dispositivos Doble Pila o Dual Stack: se trata de routers que se pueden programar para funcionar tanto en IPv4 como en IPv6, permitiendo de este modo la comunicación con ambos tipos de hosts.

·       Traductores IPv4/IPv6: se trata de dispositivos dual stack que pueden aceptar requerimientos de hosts IPv6, convertirlos a paquetes tipo IPv4, transmitirlos a destinos IPv4 y luego manejar de manera inversa las respuestas.

·       Túnel IPv4 de IPv6: en el caso de dispositivos IPv6 que están separados por routers IPv4, se propone una solución que consiste en el encapsulado de los datagramas IPv6 dentro de paquetes IPv4, para que estos últimos puedan ser interpretados por routers convencionales.

En la actualidad, muchos ISP, fabricantes de equipamiento de red y compañías web han adherido al nuevo protocolo, habilitando IPv6 en sus productos y servicios. El lanzamiento formal de IPv6, en junio de 2012, duplicó el uso global del protocolo, cuestión que se repitió al año siguiente.

La adopción de IPv6 ha estado en constante crecimiento a lo largo de los años, ya que IPv4 ha agotado su espacio de direcciones IP disponibles. En 2022, IPv6 ya había sido ampliamente implementado en muchas partes del mundo, pero la adopción variaba según la región y el proveedor de servicios de Internet.

En la actualidad, hoy 04 de noviembre de 2023 según estadísticas globales de Google el 45.17% de los usuarios a nivel mundial ya acceden a internet a través de IPV6. En México la disponibilidad representa un 46.86% de adopción y en Estados Unidos un 48.49%.

Estadísticas de adopción IPV6:

- https://www.google.com/intl/es/ipv6/statistics.html#tab=ipv6-adoption


Share:

domingo, 7 de mayo de 2023

SPANNING TREE PROTOCOL EN REDES CISCO (STP)

 


INTRODUCCIÓN

Una práctica muy habitual en redes corporativas consiste en la aplicación de enlaces redundantes con el fin de mejorar el servicio y rendimiento de estas. Sin embargo, dicha redundancia puede generar problemas, traducidos normalmente en bucles de capa 2. Este hecho, también denominado tormenta de broadcast, se produce cuando la misma trama recorre los mismos enlaces de manera infinita, pero ¿cuáles son las consecuencias reales ante tal situación? Se podrían identificar las siguientes:

Las tramas que hayan entrado en bucle lo recorrerán de manera infinita, sin ser descartadas nunca por los switchs. Ello es debido a que no disponen del campo TTL, el cual es utilizado en capa 3 para eliminar paquetes que superen un determinado número de saltos. Su ausencia en capa 2 conlleva que no exista un control sobre la vida o recorrido de las tramas, por lo tanto, serán siempre procesadas y reenviadas. A consecuencia de ello, el ancho de banda de los enlaces se verá afectado considerablemente, hasta tal punto que la red quedará inutilizable. La única manera de detenerlo es desconectando físicamente alguno de los enlaces intervinientes o apagando y encendiendo administrativamente la interfaz implicada con los comandos shutdown y no shutdown.

La tabla de MACs de los switchs que forman parte del bucle estarán continuamente actualizándose, dando como resultado registros incorrectos y con ello reenvíos de tramas a través de interfaces erróneas.

Los switchs que intervienen en el bucle tienen que procesar todas las tramas que lo atraviesan de manera continua e infinita, lo que genera una bajada de rendimiento tanto a nivel de hardware como de software (IOS).

Las tramas que atraviesan el bucle también son recibidas por dispositivos finales. Estos las aceptan y procesan siempre, hecho que genera una disminución de su ancho de banda y rendimiento.

Un ejemplo de tormenta de broadcast podría ser el siguiente:

Paso 1: Un PC de la Red A envía una trama al SwitchA. Este, como se trata de un broadcast, la reenvía a través de todas sus interfaces excepto por la que fue recibida, lo que incluye los enlaces hacia el SwitchB y SwitchC.


Paso 2: La trama es recibida por los SwitchsB y C, la procesan, y al ser un broadcast actúan exactamente igual, reenviándola por todas las interfaces excepto por la cual fue recibida, lo que incluye el enlace entre ambos y sus respectivas redes.


Paso 3: Tanto B como C han vuelto a recibir un broadcast, procediendo ambos de la misma manera que anteriormente.


Llegados a este punto, los pasos 1, 2 y 3 se repetirán de manera infinita. Si no se soluciona el problema, el ancho de banda disponible en la red, la capacidad de procesamiento de los switchs y el rendimiento de los hosts disminuirán considerablemente.

Se ha generado un bucle de capa 2 en una topología tan sencilla como la recién mostrada, compuesta tan solo por 3 dispositivos que hacen uso de enlaces redundantes. Imagina un entorno corporativo, con decenas o cientos de Switchs conectados entre sí, el problema resultaría incontrolable. Un detalle a tener en cuenta es que las tormentas de broadcast suelen originarse con los siguientes tipos de tramas:

  • Broadcast: Cuando un switch recibe una trama broadcast la reenvía a través de todas sus interfaces excepto por la cual fue recibida, lo que incluye los enlaces redundantes hacia otros switchs, pudiendo crear un bucle, tal y como se analizó en el ejemplo.
  • Unicast con dirección de destino desconocida: Una trama unicast es aquella cuyo destinatario es un solo dispositivo. En este caso, los switchs leen su dirección de destino, la buscan en la tabla de MACs y la reenvían únicamente por la interfaz asociada. Sin embargo, si la MAC no se encuentra registrada, la trama será reenviada a través de todas las interfaces, al igual que sucede con los broadcasts, generando también bucles de capa 2.
El término tormenta de broadcast se aplica por igual a los bucles generados por ambos tipos de tramas.


Continuando con el ejemplo anterior, para solucionar el problema se puede proceder de dos maneras, bien desconectando físicamente algún enlace que intervenga en el bucle, o bien apagando y encendiendo la interfaz administrativamente con los comandos shutdown y no shutdown. 

Por ejemplo, se podría aplicar cualquiera de las dos acciones sobre el enlace entre el SwitchA y B y el bucle se detendría. Aun así, esta solución sería temporal, ya que una vez conectado el cable o habilitada la interfaz se volverán a formar tormentas de broadcast ante cualquier trama de las ya mencionadas.

Entonces, ¿cada vez que se genere un bucle se debe proceder de esta manera? Evidentemente no, resultaría imposible administrar una red de estas características. Para poner fin a este problema nace el protocolo STP (Spanning Tree Protocol - IEEE 802.1D) cuya función consiste en evitar bucles de capa 2 de manera automática mediante el bloqueo de enlaces redundantes.

Entonces, ¿cada vez que se genere un bucle se debe proceder de esta manera? Evidentemente no, resultaría imposible administrar una red de estas características. Para poner fin a este problema nace el protocolo STP (Spanning Tree Protocol - IEEE 802.1D) cuya función consiste en evitar bucles de capa 2 de manera automática mediante el bloqueo de enlaces redundantes.


En este caso se ha aplicado STP y el protocolo ha bloqueado automáticamente el enlace entre el SwitchA y C para evitar tormentas de broadcast. Con ello, la comunicación se llevaría a cabo de la siguiente manera:

Paso 1: SwitchA recibe la trama broadcast y la reenvía a través de todas sus interfaces excepto por la cual fue recibida. Como el enlace entre A y C está bloqueado por STP, solo será reenviada hacia B.

Paso 2: SwitchB recibe la trama, la procesa y reenvía por todas las interfaces excepto por la recibida, lo que incluye la red B y el enlace con C.

Paso 3: Por último, el SwitchC recibe la trama, la procesa y tan solo la reenvía hacia la red C. Ello es debido a que el enlace entre C y A está bloqueado por STP y el de C y B recibió la trama, por lo tanto, no se reenvía a través del mismo.

Gracias a ello se evita la formación de bucles de capa 2 pero por contra se inutiliza un enlace. En el caso de que el link entre A y B caiga, el protocolo activa automáticamente el de A y C, por lo que la comunicación entre las diferentes redes no se verá afectada.

En resumen, STP es un protocolo de capa 2 utilizado para evitar tormentas de broadcast mediante el bloqueo de enlaces redundantes.

Share:

lunes, 6 de febrero de 2023

Matemáticas de Redes | Números Binarios

 



Los dispositivos emiten y reciben pulsos eléctricos o luminosos. Estos pulsos poseen dos estados, SÍ y NO. Este sistema de dos signos se le llama binario. Matemáticamente hablando un sistema binario está compuesto por dos estados de unos y ceros siendo por lo tanto una potencia en base 2. En informática se llama bits a la unidad que tiene también dos estados; un byte es un grupo de ocho bits.

Un octeto o un byte se expresa de la siguiente manera:

00000000

Cada uno de estos bits que componen el octeto posee dos estados, 1 y 0, obteniendo por lo tanto 256 estados con todas las combinaciones posibles.

00000000
00000001
00000010
00000011
00000100
------------
01111111
11111111

Para que estos bits sean más entendibles conviene trasladarlos al modo decimal al que se está más acostumbrado cotidianamente por lo tanto si son potencias de 2, su valor será:


Los bits que resulten iguales a 1 tendrán el valor correspondiente a esa potencia, mientras que los que permanezcan en 0 tendrán un valor igual a cero, finalmente se suma el conjunto de los decimales resultantes y se obtiene el equivalente en decimal.


Conversión de binario a decimal

Para pasar de binario a decimal es posible utilizar la siguiente técnica:



Conversión de decimal a binario

Para pasar de decimal a binario es posible utilizar la siguiente técnica:

Convertir a binario el número decimal 195:


Donde los equivalen al valor binario UNO y los NO al valor binario CERO.

Por lo tanto 195 es equivalente en binario a 11000011

Share:

domingo, 6 de noviembre de 2022

Traducción de direcciones de red (NAT)

 



A cada computadora de una red privada se le asigna una dirección dinámica mediante DHCP; todos los equipos dentro de la red se comunican entre sí por medio de estas direcciones. Pero para comunicarse con Internet se necesita una IP pública. NAT es el proceso por el que una, cien o mil computadoras de una red privada usan una dirección IP pública única (la dirección del enrutador) para tener acceso a Internet.

En la siguiente figura, vemos que en el momento en que la laptop en la red 2 se conectó al enrutador, el DHCP de éste creó la dirección IP dinámica 172.16.0.3 para la computadora.


Cuando la laptop 172.16.0.3 en la red 2 envía una solicitud a la red 1, se lleva a cabo una traducción de direcciones de red (NAT), de modo que la solicitud se ejecuta a través del enrutador 172.16.0.0. Cuando la respuesta de la red 1 vuelve al enrutador, el protocolo NAT sabe que la respuesta es para la laptop 172.16.0.3. El papel del protocolo NAT es enviar la respuesta al solicitante correcto.

Share:

domingo, 24 de julio de 2022

Obtén información valiosa sobre el estado de tu procesador con CPU-Z


¿Qué es CPU-Z?

CPU-Z es un freeware que recopila información sobre algunos de los principales dispositivos del sistema: 

Nombre y número del procesador, nombre en clave, proceso, paquete, niveles de caché. Placa base y chipset. Tipo de memoria, tamaño, tiempos y especificaciones del módulo (SPD). Medición en tiempo real de la frecuencia interna de cada núcleo, frecuencia de memoria.

CPU-Z es una aplicación gratuita que ha existido durante más de 20 años. Las CPU modernas contienen un conjunto de instrucciones que, cuando se activan, proporcionan una gran cantidad de información sobre el procesador. Además de los CPU de la computadora, también muestra información similar sobre la placa base y la memoria del sistema, que incluye:

  • Nombre y número del procesador, nombre en clave, proceso, paquete, niveles de caché.
  • Mainboard and chipset.
  • Tipo de memoria, tamaño, tiempos y especificaciones del módulo (SPD).
  • Medición en tiempo real de la frecuencia interna de cada núcleo, frecuencia de memoria.
CPU-Z también contiene un punto de referencia de CPU simple y una prueba de esfuerzo; puede cargar sus resultados en su sitio web y compartir sus estadísticas.



Sitio Web Oficial para su descarga: https://www.cpuid.com/softwares/cpu-z.html

Share:

sábado, 23 de abril de 2022

Comandos y herramientas (Windows/DOS)

 

 
Los comandos permiten usar funciones integradas en el sistema operativo. Las herramientas hacen más cosas: permiten comprobar las redes, buscar hosts (que, por cierto, es cómo llamamos a los ordenadores conectados a una red), y te permiten ver o configurar el enrutamiento de tu host.








Share:

martes, 7 de diciembre de 2021

REDES VIRTUALES (VLANS)

 


Una red totalmente construida sobre dispositivos de capa 2 es una red llamada “red plana”. Este tipo de redes se componen de un único dominio de difusión, es decir, los broadcast inundan toda la red, lo que hace que al aumentar el número de host aumente el número de broadcast disminuyendo el desempeño de la red. Sin embargo las redes conmutadas permiten eliminar las limitaciones impuestas por las redes planas dividiendo dicha red en varias redes virtuales (VLAN). 

Las VLAN (Virtual LAN) proveen seguridad, segmentación, flexibilidad, permiten agrupar usuarios de un mismo dominio de broadcast con independencia de su ubicación física en la red. Usando la tecnología VLAN se pueden agrupar lógicamente puertos del switch y los usuarios conectados a ellos en grupos de trabajo con interés común. Una VLAN por definición es un dominio de difusión creado de forma lógica.

Utilizando la electrónica y los medios existentes es posible asociar usuarios lógicamente con total independencia de su ubicación física incluso a través de una WAN. Las VLAN pueden existir en un sólo switch o bien abarcar varios de ellos.

La tecnología de VLAN está pensada para la capa de acceso donde los host se agregan a una u otra VLAN de forma estática o de forma dinámica.


Las VLAN estáticas son las que los puertos deben agregarse de forma manual. En este tipo de VLAN no es necesario ningún tipo de negociación por parte del switch y toda la configuración se realiza manualmente por el administrador quien es, además, el encargado de asignar cada puerto a cada VLAN de forma manual.

Una vez que el puerto del switch está asignado a una VLAN son los ASCI específicos del switch los que se encargan de mantener el trafico que entre por ese puerto dentro de la VLAN asociada.

Las VLAN dinámicas son muy utilizadas y se basan en la MAC del dispositivo que se conecte a un puerto determinado, son utilizadas por ejemplo en el caso de utilizar IEEE 802. IX para proporcionar seguridad. Las VLAN dinámicas utilizan algún software de gestión como Cisco Works para su funcionalidad.

Share:

sábado, 18 de septiembre de 2021

TIPOS DE HACKERS

 


¿Qué es un hacker?

Aunque mucha gente escucha la palabra "hacker" y piensa que estamos hablando de "ciberdelincuentes", un hacker  no siempre es un mal tipo. Un pirata informático (hacker) es simplemente una persona que utiliza la programación informática o las habilidades técnicas para superar un desafío o problema. Como ocurre con la mayoría de las etiquetas, hay un lado bueno y un lado malo, y también hay personas que se encuentran en algún punto intermedio.

Los hackers son expertos en seguridad informática, que se encargan de vulnerar la red de una empresa, con diversos fines y se suelen clasificar de la siguiente manera:

Sombrero Blanco

Son expertos que, con autorización, usan sus conocimientos para poner a prueba la seguridad de las redes. Si encuentran fallas de seguridad, informan al encargado de los servidores para reforzar la protección.

 Sombrero Gris

Son personas que acceden a la información de los servidores sin permiso, sin tomar ventaja y sin ganar dinero por ello. Cuando violan la seguridad, normalmente lo hacen público.

 Sombrero Negro

Son personas que ponen en riesgo la seguridad de la información de los servidores con el fin de obtener algún beneficio económico. Lo hacen por medio de ataques a la red.

Share:

miércoles, 25 de agosto de 2021

VIRTUALBOX

 


VirtualBox es un potente producto de virtualización x86 y AMD64 / Intel64 para uso empresarial y doméstico. VirtualBox no solo es un producto extremadamente rico en funciones y de alto rendimiento para clientes empresariales, sino que también es la única solución profesional que está disponible gratuitamente como software de código abierto bajo los términos de la GNU General Public License (GPL) versión 2. 

Tanto si eres un tester de software profesional como si simplemente te gusta evaluar una gran variedad de aplicaciones antes de elegir la que mejor se adapte a tus necesidades, probablemente sepas que un entorno virtualizado puede ahorrarte muchos problemas: puedes instalar cualquier aplicación sin preocuparte. puede estropear su configuración anterior y puede deshacerse de él con la misma facilidad. Y si desea probar la misma aplicación en varios sistemas operativos, Oracle VM VirtualBox puede ser muy útil.

Diseño fácil de usar y pasos a seguir para agregar una nueva máquina

La aplicación viene con una interfaz intuitiva que permite a los usuarios agregar una nueva máquina virtual y elegir el sistema operativo que prefieran (ya sea Solaris, Windows, Linux, BSD o Mac OS X), así como la versión exacta. Los siguientes pasos incluyen asignar a la nueva máquina virtual la cantidad de RAM y espacio de disco duro que ocupará, así como el tipo de almacenamiento, dinámico o fijo, que ocupará en la PC.

Trabajar con máquinas virtuales

Para iniciar cualquier sistema operativo virtualizado, simplemente debe presionar el botón Inicio; una vez que se esté ejecutando, puede pausar, restablecer o cerrar su máquina virtual, o incluso clonarla o crear un acceso directo de escritorio dedicado para ayudarlo a abrirlo cuando lo desee.

Se puede descargar desde su página oficial:

https://www.virtualbox.org/

Share:

viernes, 30 de julio de 2021

DESPIECE DE UN ALL-IN-ONE



¿Qué es una computadora all-in-one?

Una computadora all-in-one es, básicamente, una PC de escritorio que aprovecha las ventajas de la

miniaturización de componentes utilizados en las notebooks. Incorpora las propiedades de bajo consumo

de energía y ahorro de espacio físico características de los equipos portátiles.

Pasos para desarmar un ALL-IN-ONE

01. Como primer paso, sean inalámbricos, y otros periféricos que estén enchufados. En un equipo all-in- deberá desconectar teclado y mouse, en caso de que estos no one, los componentes principales se encuentran detrás del panel LCD o LED.


02. Quite todos los tornillos de la parte trasera del equipo. deberá utilizar un destornillador de la medida justa. Para efectuar esta tarea, deberá utilizar un destornillador de la medida justa.


03. Con la ayuda de un destornillador plano, del equipo all-in-one. Realice el procedimiento con delicadeza para no forzar ni separe con mucho cuidado la tapa trasera romper las trabas plásticas que puedan existir. Luego retire la carcasa.


04. Después de separar la tapa del equipo all-in-on mirando hacia abajo sobre una superficie suave, que puede ser un paño o algún tipo e, colóquelo con el panel LCD o LED de tela similar, de manera de no rayar la pantalla al manipularlo.


05. En esta etapa es necesario extraer los módulos de memoria RAM. Para realizar esta acción, primero ejerza una leve presión desde el centro de ellos hacia abajo, hasta que las trabas de los slots de memoria cedan.


06. Una vez que los módulos de memoria se hayan desprendido, proceda a tomar las memorias firmemente con los dedos, desde ambos extremos, para evitar que se caigan, y extráigalas haciendo un movimiento hacia atrás.


07. Ahora trabajará en la extracción de la unidad óptica de la computadora all-in-one. Como primer paso deberá quitar los tornillos que la fijan a la estructura del equipo, para lo cual utilizará un destornillador adecuado.


08. Aleje la unidad óptica del equipo a una dist comodidad. Es necesario extraer los componentes del equipo con delicadeza, ya ancia que le permita manipularla con que se encontrará con muchos cables que podrían dificultar la tarea.


09. El próximo paso es identificar y retirar el disco duro de la computadora. Para realizar este procedimiento, primero desconecte los cables de alimentación y datos del disco, teniendo cuidado de no dañar los conectores.


10. Por último, deberá quitar los tornillos que fijan el disco a la estructura de la PC y extraer el disco rígido. Al igual que con otros elementos, debe utilizar un destornillador de la medida justa para no desgastar la cabeza de los tornillos.

Durante la extracción de componentes de un equipo all-in-one, nunca debemos apoyarnos sobre la computadora. Otro aspecto para tener en cuenta es sostener con firmeza los elementos que extraemos, con el fin de evitar que se caigan sobre el equipo y resulten dañados.

Share:

sábado, 24 de julio de 2021

¡PUERTOS MÁS COMUNES!

 


Los puertos de uso común son aquellos que el sistema otorga a servicios para tener comunicación. Cada uno de estos puertos puede ser configurado con algunos de los protocolos TCP o UDP.


Share:

Blogroll

FacebookTwitterYoutubeVimeoTumblrPinterest

Translate

Formulario de contacto

Nombre

Correo electrónico *

Mensaje *